Artist-Directed Inverse-Kinematics Using Radial Basis Function Interpolation
نویسندگان
چکیده
One of the most common tasks in computer animation is inverse-kinematics, or determining a joint configuration required to place a particular part of an articulated character at a particular location in global space. Inversekinematics is required at design-time to assist artists using commercial 3D animation packages, for motion capture analysis, and for run-time applications such as games. We present an efficient inverse-kinematics methodology based on the interpolation of example motions and positions. The technique is demonstrated on a number of inverse-kinematics positioning tasks for a human figure. In addition to simple positioning tasks, the method provides complete motion sequences that satisfy an inversekinematic goal. The interpolation at the heart of the algorithm allows an artist’s influence to play a major role in ensuring that the system always generates plausible results. Due to the lightweight nature of the algorithm, we can position a character at extremely high frame rates, making the technique useful for time-critical run-time applications such as games.
منابع مشابه
Relevant Work Published by the Author
This paper describes a new approach for approximating the inverse kinematics of a manipulator using a RBFN (Radial Basis Function Network). A training approach using the strict interpolation method and the LMS (Least Mean Square) algorithm is presented. The strict interpolation method with regularly spaced position training patterns in the workspace can produce an appropriate approximation of t...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملA new trust-region algorithm based on radial basis function interpolation
Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...
متن کاملVerbs and Adverbs: Multidimensional Motion Interpolation Using Radial Basis Functions
This paper describes methods and data structures used to leverage motion sequences of complex linked figures. We present a technique for interpolating between example motions derived from live motion capture or produced through traditional animation tools. These motions can be characterized by emotional expressiveness or control behaviors such as turning or going uphill or downhill. We call suc...
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 20 شماره
صفحات -
تاریخ انتشار 2001